zy1000: print out khz correctly in response to setting JTAG speed
[openocd-genbsdl] / src / jtag / zy1000 / zy1000.c
1 'n/***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include <time.h>
52 #include <helper/time_support.h>
53
54 #include <netinet/tcp.h>
55
56 #if BUILD_ECOSBOARD
57 #include "zy1000_version.h"
58
59 #include <cyg/hal/hal_io.h>             // low level i/o
60 #include <cyg/hal/hal_diag.h>
61
62 #ifdef CYGPKG_HAL_NIOS2
63 #include <cyg/hal/io.h>
64 #include <cyg/firmwareutil/firmwareutil.h>
65 #endif
66
67 #define ZYLIN_VERSION GIT_ZY1000_VERSION
68 #define ZYLIN_DATE __DATE__
69 #define ZYLIN_TIME __TIME__
70 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
71 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
72
73 #endif
74
75
76 /* The software needs to check if it's in RCLK mode or not */
77 static bool zy1000_rclk = false;
78
79 static int zy1000_khz(int khz, int *jtag_speed)
80 {
81         if (khz == 0)
82         {
83                 *jtag_speed = 0;
84         }
85         else
86         {
87                 int speed;
88                 /* Round speed up to nearest divisor.
89                  *
90                  * E.g. 16000kHz
91                  * (64000 + 15999) / 16000 = 4
92                  * (4 + 1) / 2 = 2
93                  * 2 * 2 = 4
94                  *
95                  * 64000 / 4 = 16000
96                  *
97                  * E.g. 15999
98                  * (64000 + 15998) / 15999 = 5
99                  * (5 + 1) / 2 = 3
100                  * 3 * 2 = 6
101                  *
102                  * 64000 / 6 = 10666
103                  *
104                  */
105                 speed = (64000 + (khz -1)) / khz;
106                 speed = (speed + 1 ) / 2;
107                 speed *= 2;
108                 if (speed > 8190)
109                 {
110                         /* maximum dividend */
111                         speed = 8190;
112                 }
113                 *jtag_speed = speed;
114         }
115         return ERROR_OK;
116 }
117
118 static int zy1000_speed_div(int speed, int *khz)
119 {
120         if (speed == 0)
121         {
122                 *khz = 0;
123         }
124         else
125         {
126                 *khz = 64000/speed;
127         }
128
129         return ERROR_OK;
130 }
131
132 static bool readPowerDropout(void)
133 {
134         uint32_t state;
135         // sample and clear power dropout
136         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
137         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
138         bool powerDropout;
139         powerDropout = (state & 0x80) != 0;
140         return powerDropout;
141 }
142
143
144 static bool readSRST(void)
145 {
146         uint32_t state;
147         // sample and clear SRST sensing
148         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
149         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
150         bool srstAsserted;
151         srstAsserted = (state & 0x40) != 0;
152         return srstAsserted;
153 }
154
155 static int zy1000_srst_asserted(int *srst_asserted)
156 {
157         *srst_asserted = readSRST();
158         return ERROR_OK;
159 }
160
161 static int zy1000_power_dropout(int *dropout)
162 {
163         *dropout = readPowerDropout();
164         return ERROR_OK;
165 }
166
167 void zy1000_reset(int trst, int srst)
168 {
169         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
170
171         /* flush the JTAG FIFO. Not flushing the queue before messing with
172          * reset has such interesting bugs as causing hard to reproduce
173          * RCLK bugs as RCLK will stop responding when TRST is asserted
174          */
175         waitIdle();
176
177         if (!srst)
178         {
179                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
180         }
181         else
182         {
183                 /* Danger!!! if clk != 0 when in
184                  * idle in TAP_IDLE, reset halt on str912 will fail.
185                  */
186                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
187         }
188
189         if (!trst)
190         {
191                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
192         }
193         else
194         {
195                 /* assert reset */
196                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
197         }
198
199         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
200         {
201                 /* we're now in the RESET state until trst is deasserted */
202                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
203         } else
204         {
205                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
206                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
207         }
208
209         /* wait for srst to float back up */
210         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
211                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
212         {
213                 bool first = true;
214                 long long start = 0;
215                 long total = 0;
216                 for (;;)
217                 {       
218                         // We don't want to sense our own reset, so we clear here.
219                         // There is of course a timing hole where we could loose
220                         // a "real" reset.
221                         if (!readSRST())
222                         {
223                                 if (total > 1)
224                                 {
225                                   LOG_USER("SRST took %dms to deassert", (int)total);
226                                 }
227                                 break;
228                         }
229
230                         if (first)
231                         {
232                             first = false;
233                             start = timeval_ms();
234                         }
235
236                         total = timeval_ms() - start;
237
238                         keep_alive();
239
240                         if (total > 5000)
241                         {
242                                 LOG_ERROR("SRST took too long to deassert: %dms", (int)total);
243                             break;
244                         }
245                 }
246
247         }
248 }
249
250 int zy1000_speed(int speed)
251 {
252         /* flush JTAG master FIFO before setting speed */
253         waitIdle();
254
255         zy1000_rclk = false;
256
257         if (speed == 0)
258         {
259                 /*0 means RCLK*/
260                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
261                 zy1000_rclk = true;
262                 LOG_DEBUG("jtag_speed using RCLK");
263         }
264         else
265         {
266                 if (speed > 8190 || speed < 2)
267                 {
268                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
269                         return ERROR_INVALID_ARGUMENTS;
270                 }
271
272                 int khz;
273                 speed &= ~1;
274                 zy1000_speed_div(speed, &khz);
275                 LOG_USER("jtag_speed %d => JTAG clk=%d kHz", speed, khz);
276                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
277                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed);
278         }
279         return ERROR_OK;
280 }
281
282 static bool savePower;
283
284
285 static void setPower(bool power)
286 {
287         savePower = power;
288         if (power)
289         {
290                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
291         } else
292         {
293                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
294         }
295 }
296
297 COMMAND_HANDLER(handle_power_command)
298 {
299         switch (CMD_ARGC)
300         {
301         case 1: {
302                 bool enable;
303                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
304                 setPower(enable);
305                 // fall through
306         }
307         case 0:
308                 LOG_INFO("Target power %s", savePower ? "on" : "off");
309                 break;
310         default:
311                 return ERROR_INVALID_ARGUMENTS;
312         }
313
314         return ERROR_OK;
315 }
316
317 #if !BUILD_ECOSBOARD
318 static char *tcp_server = "notspecified";
319 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
320 {
321         if (argc != 2)
322                 return JIM_ERR;
323
324         tcp_server = strdup(Jim_GetString(argv[1], NULL));
325
326         return JIM_OK;
327 }
328 #endif
329
330 #if BUILD_ECOSBOARD
331 /* Give TELNET a way to find out what version this is */
332 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
333 {
334         if ((argc < 1) || (argc > 3))
335                 return JIM_ERR;
336         const char *version_str = NULL;
337
338         if (argc == 1)
339         {
340                 version_str = ZYLIN_OPENOCD_VERSION;
341         } else
342         {
343                 const char *str = Jim_GetString(argv[1], NULL);
344                 const char *str2 = NULL;
345                 if (argc > 2)
346                         str2 = Jim_GetString(argv[2], NULL);
347                 if (strcmp("openocd", str) == 0)
348                 {
349                         version_str = ZYLIN_OPENOCD;
350                 }
351                 else if (strcmp("zy1000", str) == 0)
352                 {
353                         version_str = ZYLIN_VERSION;
354                 }
355                 else if (strcmp("date", str) == 0)
356                 {
357                         version_str = ZYLIN_DATE;
358                 }
359                 else if (strcmp("time", str) == 0)
360                 {
361                         version_str = ZYLIN_TIME;
362                 }
363                 else if (strcmp("pcb", str) == 0)
364                 {
365 #ifdef CYGPKG_HAL_NIOS2
366                         version_str="c";
367 #else
368                         version_str="b";
369 #endif
370                 }
371 #ifdef CYGPKG_HAL_NIOS2
372                 else if (strcmp("fpga", str) == 0)
373                 {
374
375                         /* return a list of 32 bit integers to describe the expected
376                          * and actual FPGA
377                          */
378                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
379                         uint32_t id, timestamp;
380                         HAL_READ_UINT32(SYSID_BASE, id);
381                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
382                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
383                         version_str = fpga_id;
384                         if ((argc>2) && (strcmp("time", str2) == 0))
385                         {
386                             time_t last_mod = timestamp;
387                             char * t = ctime (&last_mod) ;
388                             t[strlen(t)-1] = 0;
389                             version_str = t;
390                         }
391                 }
392 #endif
393
394                 else
395                 {
396                         return JIM_ERR;
397                 }
398         }
399
400         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
401
402         return JIM_OK;
403 }
404 #endif
405
406 #ifdef CYGPKG_HAL_NIOS2
407
408
409 struct info_forward
410 {
411         void *data;
412         struct cyg_upgrade_info *upgraded_file;
413 };
414
415 static void report_info(void *data, const char * format, va_list args)
416 {
417         char *s = alloc_vprintf(format, args);
418         LOG_USER_N("%s", s);
419         free(s);
420 }
421
422 struct cyg_upgrade_info firmware_info =
423 {
424                 (uint8_t *)0x84000000,
425                 "/ram/firmware.phi",
426                 "Firmware",
427                 0x0300000,
428                 0x1f00000 -
429                 0x0300000,
430                 "ZylinNiosFirmware\n",
431                 report_info,
432 };
433
434 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
435 {
436         if (argc != 2)
437                 return JIM_ERR;
438
439         int length;
440         const char *str = Jim_GetString(argv[1], &length);
441
442         /* */
443         int tmpFile;
444         if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
445         {
446                 return JIM_ERR;
447         }
448         bool success;
449         success = write(tmpFile, str, length) == length;
450         close(tmpFile);
451         if (!success)
452                 return JIM_ERR;
453
454         if (!cyg_firmware_upgrade(NULL, firmware_info))
455                 return JIM_ERR;
456
457         return JIM_OK;
458 }
459 #endif
460
461 static int
462 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
463                                                                    int argc,
464                 Jim_Obj * const *argv)
465 {
466         if (argc != 1)
467         {
468                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
469                 return JIM_ERR;
470         }
471
472         bool dropout = readPowerDropout();
473
474         Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
475
476         return JIM_OK;
477 }
478
479
480
481 int zy1000_quit(void)
482 {
483
484         return ERROR_OK;
485 }
486
487
488
489 int interface_jtag_execute_queue(void)
490 {
491         uint32_t empty;
492
493         waitIdle();
494
495         /* We must make sure to write data read back to memory location before we return
496          * from this fn
497          */
498         zy1000_flush_readqueue();
499
500         /* and handle any callbacks... */
501         zy1000_flush_callbackqueue();
502
503         if (zy1000_rclk)
504         {
505                 /* Only check for errors when using RCLK to speed up
506                  * jtag over TCP/IP
507                  */
508                 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
509                 /* clear JTAG error register */
510                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
511
512                 if ((empty&0x400) != 0)
513                 {
514                         LOG_WARNING("RCLK timeout");
515                         /* the error is informative only as we don't want to break the firmware if there
516                          * is a false positive.
517                          */
518         //              return ERROR_FAIL;
519                 }
520         }
521         return ERROR_OK;
522 }
523
524
525
526
527 static void writeShiftValue(uint8_t *data, int bits);
528
529 // here we shuffle N bits out/in
530 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
531 {
532         tap_state_t pause_state = shiftState;
533         for (int j = 0; j < num_bits; j += 32)
534         {
535                 int k = num_bits - j;
536                 if (k > 32)
537                 {
538                         k = 32;
539                         /* we have more to shift out */
540                 } else if (pause_now)
541                 {
542                         /* this was the last to shift out this time */
543                         pause_state = end_state;
544                 }
545
546                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
547                 // bits are pushed out LSB to MSB
548                 uint32_t value;
549                 value = 0;
550                 if (out_value != NULL)
551                 {
552                         for (int l = 0; l < k; l += 8)
553                         {
554                                 value|=out_value[(j + l)/8]<<l;
555                         }
556                 }
557                 /* mask away unused bits for easier debugging */
558                 if (k < 32)
559                 {
560                         value&=~(((uint32_t)0xffffffff) << k);
561                 } else
562                 {
563                         /* Shifting by >= 32 is not defined by the C standard
564                          * and will in fact shift by &0x1f bits on nios */
565                 }
566
567                 shiftValueInner(shiftState, pause_state, k, value);
568
569                 if (in_value != NULL)
570                 {
571                         writeShiftValue(in_value + (j/8), k);
572                 }
573         }
574 }
575
576 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
577 {
578         for (int i = 0; i < num_fields; i++)
579         {
580                 scanBits(fields[i].out_value,
581                                 fields[i].in_value,
582                                 fields[i].num_bits,
583                                 (i == num_fields-1),
584                                 shiftState,
585                                 end_state);
586         }
587 }
588
589 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
590 {
591         int scan_size = 0;
592         struct jtag_tap *tap, *nextTap;
593         tap_state_t pause_state = TAP_IRSHIFT;
594
595         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
596         {
597                 nextTap = jtag_tap_next_enabled(tap);
598                 if (nextTap==NULL)
599                 {
600                         pause_state = state;
601                 }
602                 scan_size = tap->ir_length;
603
604                 /* search the list */
605                 if (tap == active)
606                 {
607                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
608                         /* update device information */
609                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
610
611                         tap->bypass = 0;
612                 } else
613                 {
614                         /* if a device isn't listed, set it to BYPASS */
615                         assert(scan_size <= 32);
616                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
617
618                         tap->bypass = 1;
619                 }
620         }
621
622         return ERROR_OK;
623 }
624
625
626
627
628
629 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
630 {
631         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
632         return ERROR_OK;
633 }
634
635 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
636 {
637         struct jtag_tap *tap, *nextTap;
638         tap_state_t pause_state = TAP_DRSHIFT;
639         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
640         {
641                 nextTap = jtag_tap_next_enabled(tap);
642                 if (nextTap==NULL)
643                 {
644                         pause_state = state;
645                 }
646
647                 /* Find a range of fields to write to this tap */
648                 if (tap == active)
649                 {
650                         assert(!tap->bypass);
651
652                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
653                 } else
654                 {
655                         /* Shift out a 0 for disabled tap's */
656                         assert(tap->bypass);
657                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
658                 }
659         }
660         return ERROR_OK;
661 }
662
663 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
664 {
665         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
666         return ERROR_OK;
667 }
668
669 int interface_jtag_add_tlr()
670 {
671         setCurrentState(TAP_RESET);
672         return ERROR_OK;
673 }
674
675
676 int interface_jtag_add_reset(int req_trst, int req_srst)
677 {
678         zy1000_reset(req_trst, req_srst);
679         return ERROR_OK;
680 }
681
682 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
683 {
684         /* num_cycles can be 0 */
685         setCurrentState(clockstate);
686
687         /* execute num_cycles, 32 at the time. */
688         int i;
689         for (i = 0; i < num_cycles; i += 32)
690         {
691                 int num;
692                 num = 32;
693                 if (num_cycles-i < num)
694                 {
695                         num = num_cycles-i;
696                 }
697                 shiftValueInner(clockstate, clockstate, num, 0);
698         }
699
700 #if !TEST_MANUAL()
701         /* finish in end_state */
702         setCurrentState(state);
703 #else
704         tap_state_t t = TAP_IDLE;
705         /* test manual drive code on any target */
706         int tms;
707         uint8_t tms_scan = tap_get_tms_path(t, state);
708         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
709
710         for (i = 0; i < tms_count; i++)
711         {
712                 tms = (tms_scan >> i) & 1;
713                 waitIdle();
714                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
715         }
716         waitIdle();
717         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
718 #endif
719
720         return ERROR_OK;
721 }
722
723 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
724 {
725         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
726 }
727
728 int interface_jtag_add_clocks(int num_cycles)
729 {
730         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
731 }
732
733 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
734 {
735         /*wait for the fifo to be empty*/
736         waitIdle();
737
738         for (unsigned i = 0; i < num_bits; i++)
739         {
740                 int tms;
741
742                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
743                 {
744                         tms = 0;
745                 }
746                 else
747                 {
748                         tms = 1;
749                 }
750
751                 waitIdle();
752                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
753         }
754
755         waitIdle();
756         if (state != TAP_INVALID)
757         {
758                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
759         } else
760         {
761                 /* this would be normal if we are switching to SWD mode */
762         }
763         return ERROR_OK;
764 }
765
766 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
767 {
768         int state_count;
769         int tms = 0;
770
771         state_count = 0;
772
773         tap_state_t cur_state = cmd_queue_cur_state;
774
775         uint8_t seq[16];
776         memset(seq, 0, sizeof(seq));
777         assert(num_states < (int)((sizeof(seq) * 8)));
778
779         while (num_states)
780         {
781                 if (tap_state_transition(cur_state, false) == path[state_count])
782                 {
783                         tms = 0;
784                 }
785                 else if (tap_state_transition(cur_state, true) == path[state_count])
786                 {
787                         tms = 1;
788                 }
789                 else
790                 {
791                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
792                         exit(-1);
793                 }
794
795                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
796
797                 cur_state = path[state_count];
798                 state_count++;
799                 num_states--;
800         }
801
802         return interface_add_tms_seq(state_count, seq, cur_state);
803 }
804
805 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
806 {
807         /* bypass bits before and after */
808         int pre_bits = 0;
809         int post_bits = 0;
810
811         bool found = false;
812         struct jtag_tap *cur_tap, *nextTap;
813         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
814         {
815                 nextTap = jtag_tap_next_enabled(cur_tap);
816                 if (cur_tap == tap)
817                 {
818                         found = true;
819                 } else
820                 {
821                         if (found)
822                         {
823                                 post_bits++;
824                         } else
825                         {
826                                 pre_bits++;
827                         }
828                 }
829         }
830         *pre = pre_bits;
831         *post = post_bits;
832 }
833
834 /*
835         static const int embeddedice_num_bits[] = {32, 6};
836         uint32_t values[2];
837
838         values[0] = value;
839         values[1] = (1 << 5) | reg_addr;
840
841         jtag_add_dr_out(tap,
842                         2,
843                         embeddedice_num_bits,
844                         values,
845                         TAP_IDLE);
846 */
847
848 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
849 {
850 #if 0
851         int i;
852         for (i = 0; i < count; i++)
853         {
854                 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
855                 buffer += 4;
856         }
857 #else
858         int pre_bits;
859         int post_bits;
860         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
861
862         if ((pre_bits > 32) || (post_bits + 6 > 32))
863         {
864                 int i;
865                 for (i = 0; i < count; i++)
866                 {
867                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
868                         buffer += 4;
869                 }
870         } else
871         {
872                 int i;
873                 for (i = 0; i < count; i++)
874                 {
875                         /* Fewer pokes means we get to use the FIFO more efficiently */
876                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
877                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
878                         /* Danger! here we need to exit into the TAP_IDLE state to make
879                          * DCC pick up this value.
880                          */
881                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
882                         buffer += 4;
883                 }
884         }
885 #endif
886 }
887
888
889
890 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
891 {
892         /* bypass bits before and after */
893         int pre_bits;
894         int post_bits;
895         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
896         post_bits+=2;
897
898         if ((pre_bits > 32) || (post_bits > 32))
899         {
900                 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *, uint32_t, uint32_t *, size_t);
901                 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
902         } else
903         {
904                 static const int bits[] = {32, 2};
905                 uint32_t values[] = {0, 0};
906
907                 /* FIX!!!!!! the target_write_memory() API started this nasty problem
908                  * with unaligned uint32_t * pointers... */
909                 const uint8_t *t = (const uint8_t *)data;
910
911                 while (--count > 0)
912                 {
913 #if 1
914                         /* Danger! This code doesn't update cmd_queue_cur_state, so
915                          * invoking jtag_add_pathmove() before jtag_add_dr_out() after
916                          * this loop would fail!
917                          */
918                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
919
920                         uint32_t value;
921                         value = *t++;
922                         value |= (*t++<<8);
923                         value |= (*t++<<16);
924                         value |= (*t++<<24);
925
926                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
927                         /* minimum 2 bits */
928                         shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
929
930                         /* copy & paste from arm11_dbgtap.c */
931                         //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
932                         /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
933                          * This is probably a bug in the Avalon bus(cross clocking bridge?)
934                          * or in the jtag registers module.
935                          */
936                         waitIdle();
937                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
938                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
939                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
940                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
941                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
942                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
943                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
944                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
945                         /* we don't have to wait for the queue to empty here */
946                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
947                         waitIdle();
948 #else
949                         static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
950                         {
951                                 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
952                         };
953
954                         values[0] = *t++;
955                         values[0] |= (*t++<<8);
956                         values[0] |= (*t++<<16);
957                         values[0] |= (*t++<<24);
958
959                         jtag_add_dr_out(tap,
960                                 2,
961                                 bits,
962                                 values,
963                                 TAP_IDLE);
964
965                         jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
966                                 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
967 #endif
968                 }
969
970                 values[0] = *t++;
971                 values[0] |= (*t++<<8);
972                 values[0] |= (*t++<<16);
973                 values[0] |= (*t++<<24);
974
975                 /* This will happen on the last iteration updating cmd_queue_cur_state
976                  * so we don't have to track it during the common code path
977                  */
978                 jtag_add_dr_out(tap,
979                         2,
980                         bits,
981                         values,
982                         TAP_IDLE);
983
984                 return jtag_execute_queue();
985         }
986 }
987
988
989 static const struct command_registration zy1000_commands[] = {
990         {
991                 .name = "power",
992                 .handler = handle_power_command,
993                 .mode = COMMAND_ANY,
994                 .help = "Turn power switch to target on/off. "
995                         "With no arguments, prints status.",
996                 .usage = "('on'|'off)",
997         },
998 #if BUILD_ECOSBOARD
999         {
1000                 .name = "zy1000_version",
1001                 .mode = COMMAND_ANY,
1002                 .jim_handler = jim_zy1000_version,
1003                 .help = "Print version info for zy1000.",
1004                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
1005         },
1006 #else
1007         {
1008                 .name = "zy1000_server",
1009                 .mode = COMMAND_ANY,
1010                 .jim_handler = jim_zy1000_server,
1011                 .help = "Tcpip address for ZY1000 server.",
1012                 .usage = "address",
1013         },
1014 #endif
1015         {
1016                 .name = "powerstatus",
1017                 .mode = COMMAND_ANY,
1018                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
1019                 .help = "Returns power status of target",
1020         },
1021 #ifdef CYGPKG_HAL_NIOS2
1022         {
1023                 .name = "updatezy1000firmware",
1024                 .mode = COMMAND_ANY,
1025                 .jim_handler = jim_zy1000_writefirmware,
1026                 .help = "writes firmware to flash",
1027                 /* .usage = "some_string", */
1028         },
1029 #endif
1030         COMMAND_REGISTRATION_DONE
1031 };
1032
1033
1034 static int tcp_ip = -1;
1035
1036 /* Write large packets if we can */
1037 static size_t out_pos;
1038 static uint8_t out_buffer[16384];
1039 static size_t in_pos;
1040 static size_t in_write;
1041 static uint8_t in_buffer[16384];
1042
1043 static bool flush_writes(void)
1044 {
1045         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1046         out_pos = 0;
1047         return ok;
1048 }
1049
1050 static bool writeLong(uint32_t l)
1051 {
1052         int i;
1053         for (i = 0; i < 4; i++)
1054         {
1055                 uint8_t c = (l >> (i*8))&0xff;
1056                 out_buffer[out_pos++] = c;
1057                 if (out_pos >= sizeof(out_buffer))
1058                 {
1059                         if (!flush_writes())
1060                         {
1061                                 return false;
1062                         }
1063                 }
1064         }
1065         return true;
1066 }
1067
1068 static bool readLong(uint32_t *out_data)
1069 {
1070         if (out_pos > 0)
1071         {
1072                 if (!flush_writes())
1073                 {
1074                         return false;
1075                 }
1076         }
1077
1078         uint32_t data = 0;
1079         int i;
1080         for (i = 0; i < 4; i++)
1081         {
1082                 uint8_t c;
1083                 if (in_pos == in_write)
1084                 {
1085                         /* read more */
1086                         int t;
1087                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1088                         if (t < 1)
1089                         {
1090                                 return false;
1091                         }
1092                         in_write = (size_t) t;
1093                         in_pos = 0;
1094                 }
1095                 c = in_buffer[in_pos++];
1096
1097                 data |= (c << (i*8));
1098         }
1099         *out_data = data;
1100         return true;
1101 }
1102
1103 enum ZY1000_CMD
1104 {
1105         ZY1000_CMD_POKE = 0x0,
1106         ZY1000_CMD_PEEK = 0x8,
1107         ZY1000_CMD_SLEEP = 0x1,
1108         ZY1000_CMD_WAITIDLE = 2
1109 };
1110
1111
1112 #if !BUILD_ECOSBOARD
1113
1114 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1115 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1116
1117 /* We initialize this late since we need to know the server address
1118  * first.
1119  */
1120 static void tcpip_open(void)
1121 {
1122         if (tcp_ip >= 0)
1123                 return;
1124
1125         struct sockaddr_in echoServAddr; /* Echo server address */
1126
1127         /* Create a reliable, stream socket using TCP */
1128         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1129         {
1130                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1131                 exit(-1);
1132         }
1133
1134         /* Construct the server address structure */
1135         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1136         echoServAddr.sin_family = AF_INET; /* Internet address family */
1137         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1138         echoServAddr.sin_port = htons(7777); /* Server port */
1139
1140         /* Establish the connection to the echo server */
1141         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1142         {
1143                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1144                 exit(-1);
1145         }
1146
1147         int flag = 1;
1148         setsockopt(tcp_ip,      /* socket affected */
1149                         IPPROTO_TCP,            /* set option at TCP level */
1150                         TCP_NODELAY,            /* name of option */
1151                         (char *)&flag,          /* the cast is historical cruft */
1152                         sizeof(int));           /* length of option value */
1153
1154 }
1155
1156
1157 /* send a poke */
1158 void zy1000_tcpout(uint32_t address, uint32_t data)
1159 {
1160         tcpip_open();
1161         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1162                         !writeLong(data))
1163         {
1164                 fprintf(stderr, "Could not write to zy1000 server\n");
1165                 exit(-1);
1166         }
1167 }
1168
1169 /* By sending the wait to the server, we avoid a readback
1170  * of status. Radically improves performance for this operation
1171  * with long ping times.
1172  */
1173 void waitIdle(void)
1174 {
1175         tcpip_open();
1176         if (!writeLong((ZY1000_CMD_WAITIDLE << 24)))
1177         {
1178                 fprintf(stderr, "Could not write to zy1000 server\n");
1179                 exit(-1);
1180         }
1181 }
1182
1183 uint32_t zy1000_tcpin(uint32_t address)
1184 {
1185         tcpip_open();
1186
1187         zy1000_flush_readqueue();
1188
1189         uint32_t data;
1190         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1191                         !readLong(&data))
1192         {
1193                 fprintf(stderr, "Could not read from zy1000 server\n");
1194                 exit(-1);
1195         }
1196         return data;
1197 }
1198
1199 int interface_jtag_add_sleep(uint32_t us)
1200 {
1201         tcpip_open();
1202         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1203                         !writeLong(us))
1204         {
1205                 fprintf(stderr, "Could not read from zy1000 server\n");
1206                 exit(-1);
1207         }
1208         return ERROR_OK;
1209 }
1210
1211 /* queue a readback */
1212 #define readqueue_size 16384
1213 static struct
1214 {
1215         uint8_t *dest;
1216         int bits;
1217 } readqueue[readqueue_size];
1218
1219 static int readqueue_pos = 0;
1220
1221 /* flush the readqueue, this means reading any data that
1222  * we're expecting and store them into the final position
1223  */
1224 void zy1000_flush_readqueue(void)
1225 {
1226         if (readqueue_pos == 0)
1227         {
1228                 /* simply debugging by allowing easy breakpoints when there
1229                  * is something to do. */
1230                 return;
1231         }
1232         int i;
1233         tcpip_open();
1234         for (i = 0; i < readqueue_pos; i++)
1235         {
1236                 uint32_t value;
1237                 if (!readLong(&value))
1238                 {
1239                         fprintf(stderr, "Could not read from zy1000 server\n");
1240                         exit(-1);
1241                 }
1242
1243                 uint8_t *in_value = readqueue[i].dest;
1244                 int k = readqueue[i].bits;
1245
1246                 // we're shifting in data to MSB, shift data to be aligned for returning the value
1247                 value >>= 32-k;
1248
1249                 for (int l = 0; l < k; l += 8)
1250                 {
1251                         in_value[l/8]=(value >> l)&0xff;
1252                 }
1253         }
1254         readqueue_pos = 0;
1255 }
1256
1257 /* By queuing the callback's we avoid flushing the
1258 read queue until jtag_execute_queue(). This can
1259 reduce latency dramatically for cases where
1260 callbacks are used extensively.
1261 */
1262 #define callbackqueue_size 128
1263 static struct callbackentry
1264 {
1265         jtag_callback_t callback;
1266         jtag_callback_data_t data0;
1267         jtag_callback_data_t data1;
1268         jtag_callback_data_t data2;
1269         jtag_callback_data_t data3;
1270 } callbackqueue[callbackqueue_size];
1271
1272 static int callbackqueue_pos = 0;
1273
1274 void zy1000_jtag_add_callback4(jtag_callback_t callback, jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1275 {
1276         if (callbackqueue_pos >= callbackqueue_size)
1277         {
1278                 zy1000_flush_callbackqueue();
1279         }
1280
1281         callbackqueue[callbackqueue_pos].callback = callback;
1282         callbackqueue[callbackqueue_pos].data0 = data0;
1283         callbackqueue[callbackqueue_pos].data1 = data1;
1284         callbackqueue[callbackqueue_pos].data2 = data2;
1285         callbackqueue[callbackqueue_pos].data3 = data3;
1286         callbackqueue_pos++;
1287 }
1288
1289 static int zy1000_jtag_convert_to_callback4(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1290 {
1291         ((jtag_callback1_t)data1)(data0);
1292         return ERROR_OK;
1293 }
1294
1295 void zy1000_jtag_add_callback(jtag_callback1_t callback, jtag_callback_data_t data0)
1296 {
1297         zy1000_jtag_add_callback4(zy1000_jtag_convert_to_callback4, data0, (jtag_callback_data_t)callback, 0, 0);
1298 }
1299
1300 void zy1000_flush_callbackqueue(void)
1301 {
1302         /* we have to flush the read queue so we have access to
1303          the data the callbacks will use 
1304         */
1305         zy1000_flush_readqueue();
1306         int i;
1307         for (i = 0; i < callbackqueue_pos; i++)
1308         {
1309                 struct callbackentry *entry = &callbackqueue[i];
1310                 jtag_set_error(entry->callback(entry->data0, entry->data1, entry->data2, entry->data3));
1311         }
1312         callbackqueue_pos = 0;
1313 }
1314
1315 static void writeShiftValue(uint8_t *data, int bits)
1316 {
1317         waitIdle();
1318
1319         if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc)))
1320         {
1321                 fprintf(stderr, "Could not read from zy1000 server\n");
1322                 exit(-1);
1323         }
1324
1325         if (readqueue_pos >= readqueue_size)
1326         {
1327                 zy1000_flush_readqueue();
1328         }
1329
1330         readqueue[readqueue_pos].dest = data;
1331         readqueue[readqueue_pos].bits = bits;
1332         readqueue_pos++;
1333 }
1334
1335 #else
1336
1337 static void writeShiftValue(uint8_t *data, int bits)
1338 {
1339         uint32_t value;
1340         waitIdle();
1341         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
1342         VERBOSE(LOG_INFO("getShiftValue %08x", value));
1343
1344         // data in, LSB to MSB
1345         // we're shifting in data to MSB, shift data to be aligned for returning the value
1346         value >>= 32 - bits;
1347
1348         for (int l = 0; l < bits; l += 8)
1349         {
1350                 data[l/8]=(value >> l)&0xff;
1351         }
1352 }
1353
1354 #endif
1355
1356 #if BUILD_ECOSBOARD
1357 static char tcpip_stack[2048];
1358 static cyg_thread tcpip_thread_object;
1359 static cyg_handle_t tcpip_thread_handle;
1360
1361 static char watchdog_stack[2048];
1362 static cyg_thread watchdog_thread_object;
1363 static cyg_handle_t watchdog_thread_handle;
1364
1365 /* Infinite loop peeking & poking */
1366 static void tcpipserver(void)
1367 {
1368         for (;;)
1369         {
1370                 uint32_t address;
1371                 if (!readLong(&address))
1372                         return;
1373                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1374                 address &= 0xffffff;
1375                 switch (c)
1376                 {
1377                         case ZY1000_CMD_POKE:
1378                         {
1379                                 uint32_t data;
1380                                 if (!readLong(&data))
1381                                         return;
1382                                 address &= ~0x80000000;
1383                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1384                                 break;
1385                         }
1386                         case ZY1000_CMD_PEEK:
1387                         {
1388                                 uint32_t data;
1389                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1390                                 if (!writeLong(data))
1391                                         return;
1392                                 break;
1393                         }
1394                         case ZY1000_CMD_SLEEP:
1395                         {
1396                                 uint32_t data;
1397                                 if (!readLong(&data))
1398                                         return;
1399                                 jtag_sleep(data);
1400                                 break;
1401                         }
1402                         case ZY1000_CMD_WAITIDLE:
1403                         {
1404                                 waitIdle();
1405                                 break;
1406                         }
1407                         default:
1408                                 return;
1409                 }
1410         }
1411 }
1412
1413
1414 static void tcpip_server(cyg_addrword_t data)
1415 {
1416         int so_reuseaddr_option = 1;
1417
1418         int fd;
1419         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1420         {
1421                 LOG_ERROR("error creating socket: %s", strerror(errno));
1422                 exit(-1);
1423         }
1424
1425         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1426                         sizeof(int));
1427
1428         struct sockaddr_in sin;
1429         unsigned int address_size;
1430         address_size = sizeof(sin);
1431         memset(&sin, 0, sizeof(sin));
1432         sin.sin_family = AF_INET;
1433         sin.sin_addr.s_addr = INADDR_ANY;
1434         sin.sin_port = htons(7777);
1435
1436         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1437         {
1438                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1439                 exit(-1);
1440         }
1441
1442         if (listen(fd, 1) == -1)
1443         {
1444                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1445                 exit(-1);
1446         }
1447
1448
1449         for (;;)
1450         {
1451                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1452                 if (tcp_ip < 0)
1453                 {
1454                         continue;
1455                 }
1456
1457                 int flag = 1;
1458                 setsockopt(tcp_ip,      /* socket affected */
1459                                 IPPROTO_TCP,            /* set option at TCP level */
1460                                 TCP_NODELAY,            /* name of option */
1461                                 (char *)&flag,          /* the cast is historical cruft */
1462                                 sizeof(int));           /* length of option value */
1463
1464                 bool save_poll = jtag_poll_get_enabled();
1465
1466                 /* polling will screw up the "connection" */
1467                 jtag_poll_set_enabled(false);
1468
1469                 tcpipserver();
1470
1471                 jtag_poll_set_enabled(save_poll);
1472
1473                 close(tcp_ip);
1474
1475         }
1476         close(fd);
1477
1478 }
1479
1480 #ifdef WATCHDOG_BASE
1481 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1482 static void watchdog_server(cyg_addrword_t data)
1483 {
1484         int so_reuseaddr_option = 1;
1485
1486         int fd;
1487         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1488         {
1489                 LOG_ERROR("error creating socket: %s", strerror(errno));
1490                 exit(-1);
1491         }
1492
1493         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1494                         sizeof(int));
1495
1496         struct sockaddr_in sin;
1497         unsigned int address_size;
1498         address_size = sizeof(sin);
1499         memset(&sin, 0, sizeof(sin));
1500         sin.sin_family = AF_INET;
1501         sin.sin_addr.s_addr = INADDR_ANY;
1502         sin.sin_port = htons(8888);
1503
1504         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1505         {
1506                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1507                 exit(-1);
1508         }
1509
1510         if (listen(fd, 1) == -1)
1511         {
1512                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1513                 exit(-1);
1514         }
1515
1516
1517         for (;;)
1518         {
1519                 int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1520
1521                 /* Start watchdog, must be reset every 10 seconds. */
1522                 HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1523
1524                 if (watchdog_ip < 0)
1525                 {
1526                         LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1527                         exit(-1);
1528                 }
1529
1530                 int flag = 1;
1531                 setsockopt(watchdog_ip, /* socket affected */
1532                                 IPPROTO_TCP,            /* set option at TCP level */
1533                                 TCP_NODELAY,            /* name of option */
1534                                 (char *)&flag,          /* the cast is historical cruft */
1535                                 sizeof(int));           /* length of option value */
1536
1537
1538                 char buf;
1539                 for (;;)
1540                 {
1541                         if (read(watchdog_ip, &buf, 1) == 1)
1542                         {
1543                                 /* Reset timer */
1544                                 HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1545                                 /* Echo so we can telnet in and see that resetting works */
1546                                 write(watchdog_ip, &buf, 1);
1547                         } else
1548                         {
1549                                 /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1550                                  * now.
1551                                  */
1552                                 return;
1553                         }
1554
1555                 }
1556
1557                 /* Never reached */
1558         }
1559 }
1560 #endif
1561
1562 int interface_jtag_add_sleep(uint32_t us)
1563 {
1564         jtag_sleep(us);
1565         return ERROR_OK;
1566 }
1567
1568 #endif
1569
1570
1571 int zy1000_init(void)
1572 {
1573 #if BUILD_ECOSBOARD
1574         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1575 #endif
1576
1577         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1578
1579         setPower(true); // on by default
1580
1581
1582          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1583         zy1000_reset(0, 0);
1584         zy1000_speed(jtag_get_speed());
1585
1586
1587 #if BUILD_ECOSBOARD
1588         cyg_thread_create(1, tcpip_server, (cyg_addrword_t) 0, "tcip/ip server",
1589                         (void *) tcpip_stack, sizeof(tcpip_stack),
1590                         &tcpip_thread_handle, &tcpip_thread_object);
1591         cyg_thread_resume(tcpip_thread_handle);
1592 #ifdef WATCHDOG_BASE
1593         cyg_thread_create(1, watchdog_server, (cyg_addrword_t) 0, "watchdog tcip/ip server",
1594                         (void *) watchdog_stack, sizeof(watchdog_stack),
1595                         &watchdog_thread_handle, &watchdog_thread_object);
1596         cyg_thread_resume(watchdog_thread_handle);
1597 #endif
1598 #endif
1599
1600         return ERROR_OK;
1601 }
1602
1603
1604
1605 struct jtag_interface zy1000_interface =
1606 {
1607         .name = "ZY1000",
1608         .supported = DEBUG_CAP_TMS_SEQ,
1609         .execute_queue = NULL,
1610         .speed = zy1000_speed,
1611         .commands = zy1000_commands,
1612         .init = zy1000_init,
1613         .quit = zy1000_quit,
1614         .khz = zy1000_khz,
1615         .speed_div = zy1000_speed_div,
1616         .power_dropout = zy1000_power_dropout,
1617         .srst_asserted = zy1000_srst_asserted,
1618 };